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Abstract

The ability to predict city-wide parking availability is cru-
cial for the successful development of Parking Guidance and
Information (PGI) systems. Indeed, the effective prediction
of city-wide parking availability can improve parking effi-
ciency, help urban planning, and ultimately alleviate city con-
gestion. However, it is a non-trivial task for predicting city-
wide parking availability because of three major challenges:
1) the non-Euclidean spatial autocorrelation among parking
lots, 2) the dynamic temporal autocorrelation inside of and
between parking lots, and 3) the scarcity of information about
real-time parking availability obtained from real-time sen-
sors (e.g., camera, ultrasonic sensor, and GPS). To this end,
we propose Semi-supervised Hierarchical Recurrent Graph
Neural Network (SHARE) for predicting city-wide parking
availability. Specifically, we first propose a hierarchical graph
convolution structure to model non-Euclidean spatial auto-
correlation among parking lots. Along this line, a contextual
graph convolution block and a soft clustering graph convo-
lution block are respectively proposed to capture local and
global spatial dependencies between parking lots. Addition-
ally, we adopt a recurrent neural network to incorporate dy-
namic temporal dependencies of parking lots. Moreover, we
propose a parking availability approximation module to esti-
mate missing real-time parking availabilities from both spa-
tial and temporal domain. Finally, experiments on two real-
world datasets demonstrate the prediction performance of
SHARE outperforms seven state-of-the-art baselines.

Introduction
In recent years, we have witnessed significant development
of Intelligent Transportation Systems (ITS) (Zhang et al.
2011). Parking guidance and information (PGI) systems, es-
pecially parking availability prediction, is an indispensable
component of ITS. According to a survey by the Interna-
tional Parking Institute (IPI)1, over 30% cars on the road are
searching for parking, and these cruising cars contribute up
to 40% traffic jams in urban areas (Shoup 2006). Thus, city-
wide parking availability prediction is of great importance
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to help drivers efficiently find parking, help governments for
urban planning, and alleviate the city’s traffic congestion.

Due to its importance, city-wide parking availability pre-
diction has attracted much attention from both academia and
industry. On one hand, Google Maps predicts parking diffi-
culty on a city-wide scale based on users’ survey and tra-
jectory data (Arora et al. 2019), and Baidu Maps estimates
real-time city-wide parking availability based on environ-
mental contextual features (e.g., Point of Interest (POI), map
queries, etc.) (Rong et al. 2018). The above mentions make
city-wide parking availability prediction based on biased
and indirect input signals (e.g., user’s feedback are noisy and
lagged), which may induce inaccurate prediction results. On
the other hand, in recent years, we have witnessed real-time
sensor devices such as camera, ultrasonic sensor, and GPS
become ubiquitous, which can significantly improve the pre-
diction accuracy of parking availability (Mathur et al. 2010;
Fusek et al. 2013; Zhou and Tung 2015). However, for eco-
nomic and privacy concerns, it is difficult to be scaled up to
cover all parking lots of a city.

In this paper, we propose to simultaneously predict the
availability of each parking lot of a city, based on both en-
vironmental contextual data (e.g., POI distribution, popu-
lation) and partially observed real-time parking availabil-
ity data. By integrating both datasets, we can make a bet-
ter parking availability prediction at a city-scale. However,
it is a non-trivial task faced with the following three ma-
jor challenges. (1) Spatial autocorrelation. The availability
of a parking lot is not only effected by the occupancy of
nearby parking lots but may also synchronize with distant
parking lots (Wang et al. 2017; Liu et al. 2017). The first
challenge is how to model the irregular and non-Euclidean
autocorrelation between parking lots. (2) Temporal autocor-
relation. Future availability of a parking lot is correlated
with its availability of previous time periods (Rajabioun and
Ioannou 2015). Besides, the spatial autocorrelation between
parking lots may also vary over time (Liang et al. 2018;
Yao et al. 2019). How to model dynamic temporal autocor-
relation of each parking lot is another challenge. (3) Parking
availability scarcity. Only a small portion of parking lots

1https://www.parking.org/wp-content/uploads/2015/12/Emergi
ng-Trends-2012.pdf



are equipped with real-time sensors. According to one of the
largest map service application, there are over 70, 000 park-
ing lots in Beijing, however, only 6.12% of them have real-
time parking availability data. The third challenge is how to
utilize the scarce and incomplete real-time parking availabil-
ity information.

To tackle above challenges, in this paper, we present
Semi-supervised Hierarchical Recurrent Graph Neural Net-
work (SHARE) for city-wide parking availability predic-
tion. Our major contributions are summarized as follows:
• We propose a semi-supervised spatio-temporal learning

framework to incorporate both environmental contextual
factors and sparse real-time parking availability data for
city-wide parking availability prediction.

• We propose a hierarchical graph convolution module to
capture non-Euclidean spatial correlations among parking
lots. It consists of a contextual graph convolution block
and a soft clustering graph convolution block for local and
global spatial dependencies modeling, respectively.

• We propose a parking availability approximation mod-
ule to estimate missing real-time parking availabilities of
parking lots without sensor monitoring. Specifically, we
introduce a propagating convolution block and reuse the
temporal module to approximate missing parking avail-
abilities from both spatial and temporal domain, then fuse
them through an entropy-based mechanism.

• We evaluate SHARE on two real-world datasets col-
lected from BEIJING and SHENZHEN, two metropolises
in China. The results demonstrate our model achieves the
best prediction performance against seven baselines.

Preliminaries
Consider a set of parking lots P = Pl ∪ Pu =
{p1, p2, . . . , pN}, where N is the total number of parking
lots, Pl and Pu denote a set of parking lots with and without
real-time sensors (e.g., camera, ultrasonic sensor, GPS, etc.),
respectively. Let Xt = {xt1,xt2, . . . ,xtN} ∈ RN×M denote
observed M dimensional contextual feature vectors (e.g.,
POI distribution, population, etc.) for all parking lots in P
at time t. We begin the formal definition of parking avail-
ability prediction with the definition of parking availability.
Definition 1 Parking availability (PA). Given a parking lot
pi ∈ P , at time step t, the parking availability of pi, denoted
yti is defined as the number of vacant parking spot in pi.

Specifically, we use ytPl
= {yt1, yt2, . . . , yt|Pl|} to denote

observed PAs of parking lots in Pl at time step t. In this
paper, we are interested in predicting PAs for all parking lots
pi ∈ P by leveraging the contextual data of P and partially
observed real-time parking availability data of Pl.
Problem 1 Parking availability prediction problem. Given
historical time window T , contextual features for all parking
lots X = (Xt−T+1,Xt−T+2, . . . ,Xt), and partially ob-
served real-time PAs YPl

= (yt−T+1
Pl

,yt−T+2
Pl

, . . . ,ytPl
),

our problem is to predict PAs for all pi ∈ P over the next τ
time steps,

f(X ;YPl
)→ (ŷt+1, ŷt+2, . . . , ŷt+τ ), (1)
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Figure 1: The framework overview of SHARE.

where ŷt+1 = ŷt+1
Pl
∪ ŷt+1

Pu
, f(·) is the mapping function we

aim to learn.

Framework overview
The architecture of SHARE is shown in Figure 1, where the
inputs are contextual features as well as partially observed
real-time PAs, and the output are the predicted PAs of all
parking lots in next τ time steps. There are three major com-
ponents in SHARE. First, the Hierarchical graph convolu-
tion module models spatial autocorrelations among parking
lots, where the Contextual Graph Convolution (CxtConv)
block captures local spatial dependencies between parking
lots through rich contextual features (e.g., POI distribution,
regional population, etc.), while the Soft Clustering Graph
Convolution (SCConv) block captures global correlations
among distant parking lots by softly assigning each park-
ing lot to a set of latent cluster nodes. Second, the tem-
poral autocorrelation modeling module employs the Gated
Recurrent Unit (GRU) to model dynamic temporal depen-
dencies of each parking lot. Third, the PA approximation
module estimates distributions of missing PAs for parking
lots in Pu, from both spatial and temporal domain. In the
spatial domain, the Propagating Graph Convolution (Prop-
Conv) block propagates observed real-time PAs to approxi-
nate missing PAs based on the contextual similarity of each
parking lot. In the temporal domain, we reuse the GRU mod-
ule to approximate current PA distributions based on its out-
put in previous time period. Two estimated PA distributions
are then fused through an entropy-based mechanism and
feed to SCConv block and GRU module for final prediction.

Hierarchical spatial dependency modeling
We first introduce the hierarchical graph convolution mod-
ule, including the contextual graph convolution block and
the soft clustering graph convolution block.

Contextual graph convolution
In the spatial domain, the PA of nearby parking lots are usu-
ally correlated and mutually influenced by each other. For
example, when there is a big concert, the PAs of parking
lots near the concert hall are usually low, and the parking
demand usually gradually diffuses from nearby to distant.



Inspired by the recent success of graph convolution net-
work (Kipf and Welling 2017; Velickovic et al. 2018) on
processing non-Euclidean graph structures, we first intro-
duce the CxtConv block to capture local spatial dependen-
cies solely based on contextual features.

We model the local correlations among parking lots as a
graph G = (V,E,A), where V = P is the set of parking
lots, E is a set of edges indicating connectivity among park-
ing lots, and A denotes the proximity matrix of G (Ma et
al. 2019). Specifically, we define the connectivity constraint
eij ∈ E as

eij =

{
1, dist(vi, vj) ≤ ε
0, otherwise

, (2)

where dist(·) is the road network distance between parking
lots pi and pj , ε is a distance threshold.

Since the influence of different nearby parking lots may
vary non-linearly, we employ an attention mechanism to
compute the coefficient between parking lots, defined as

cij = Attn(Wax
c
i ,Wax

c
j), (3)

where xci and xcj are current contextual representations of
parking lot pi and pj , Wa is a learnable weighted ma-
trix shared over all edges, and Attn(·) is a shared attention
mechanism (e.g., dot-product, concatenation, etc.) (Vaswani
et al. 2017). The proximity score between pi and pj is fur-
ther defined as

αij =
exp(cij)∑

k∈Ni
exp(cik)

. (4)

In general, the above attention mechanism is capable of
computing pair-wise proximity score for all pi ∈ P . How-
ever, this formulation will lead to quadratic complexity.
To weigh more attention on neighboring parking lots and
help faster convergence, we inject the adjacency constraint
where the attention operation only operate on adjacent nodes
j ∈ Ni, where Ni is a set of neighboring parking lots of pi
in G. Note that the influence of nearby parking lot at differ-
ent time step may also vary, we learn a different proximity
score for each different time steps.

Once αij is obtained, the contextual graph convolution
operation updates representation of current parking lot by
aggregating and transforming its neighbors, defined as

xc
′

i = σ(
∑
j∈Ni

αijWcx
c
j), (5)

where σ is a non-linear activation function, and Wc ∈ Rd×d
is a learnable weighted matrix shared over all parking lots.
Note that we can stack l identical contextual graph convolu-
tion layers to capture l-hop local dependencies, and xcj is the
raw contextual feature in the first CxtConv layer.

Soft clustering graph convolution
Besides local correlation, distant parking lots may also be
correlated. For example, distant parking lots in similar func-
tional areas may show similar PA, e.g., business areas may
have lower PA at office hour, and residential areas may have
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Figure 2: Hierarchical soft clustering.

higher PA at the same time. However, CxtConv only cap-
tures local spatial correlation. (Li, Han, and Wu 2018) shows
when l goes large, the representation of all parking lots tends
to be similar, therefore losses discriminative power. To this
end, we propose the SCConv block to capture global corre-
lations between parking lots. Specifically, SCConv defines a
set of latent nodes and learns the representation of each la-
tent node based on learned representations of each parking
lot. Rather than cluster each parking lot into a specific clus-
ter, we learn a soft assignment matrix so that each parking
lot have a chance to belong to multiple clusters with differ-
ent probabilities (but with total probability equal to one), as
shown in Figure 2.

The intuition behind SCConv is two-fold. First, distant
parking lots may have similar contextual features and PAs,
therefore should have similar representations. The shared
latent node representation can be viewed as a regulariza-
tion for the prediction task. Second, one parking lot may be
mapped to multiple latent nodes. If we view each latent node
as a different functionality class, a parking lot may serve for
several functionalities. For example, a parking lot in a recre-
ational center may be occupied by external visitors from a
nearby office building.

The key component in SCConv is the soft assignment ma-
trix. Given that there are K latent nodes, let S ∈ RN×K
denotes the soft assignment matrix, where Si,j ∈ S denotes
the probability of i-th parking lot pi maps to j-th latent node.
Specifically, we use Si,· denote the i-th row and S·,j denote
the j-th column of S. Given the learned representation of
each parking lot xi, each row of S is computed as

Si,· = Softmax(Wsxi), (6)

which guarantees that the probabilities that a given parking
lot belongs to each latent node sum equals one.

Once S is obtained, the representation of each latent node
xsi ∈ Xs can be derived by

xsi =

N∑
j=1

S>i,jxj . (7)

Given the representation of each latent node, similar to
CxtConv, we apply soft clustering convolution operation to



capture the dependency between each latent node,

xs
′

i = σ(
∑
j∈Ni

αsijWlx
s
j), (8)

where σ is non-linear activation function, and αsij is the
proximity score between two latent nodes. Rather than in-
troduce extra attention parameter as in CxtConv, we derive
proximity score between latent nodes based on adjacency
constraint between parking lots,

αsij =

N∑
m=1

N∑
n=1

S>i,mamnSn,j . (9)

where amn equals one if parking lots pm and pn are con-
nected. With learned latent node representation, we generate
the soft clustering representation for each parking lot as a
reverse process of latent node representation generation,

xsci =

K∑
j=1

Si,jx
s′

j . (10)

Temporal dependency modeling
We leverage the Gated Recurrent Unit (GRU) (Chung
et al. 2014), a simple yet effective variant of recurrent
neural network (RNN), to model the temporal depen-
dency. Consider previous T step inputs of parking lot pi,
(xt−T+1
i ,xt−T+2

i , · · · ,xti), we denote the status of pi at
time step t− 1 and t as ht−1i and hti, respectively. The tem-
poral dependency between ht−1i and hti can be modeled by

hti = (1− zti) ◦ ht−1i + zti ◦ h̃ti, (11)

where zti, h̃
t
i are defined as
rti = σ(Wr[h

t−1
i ⊕ xti] + br)

zti = σ(Wz[h
t−1
i ⊕ xti] + bz)

h̃ti = tanh(Wh̃[r
t
i ◦ ht−1i ⊕ xti] + bh̃)

, (12)

where Wr, Wz , Wh̃, br, bz , bh̃ are learnable parameters,
⊕ is the concatenation operation, and ◦ denotes Hadamard
product. Then the hidden state hti is directly used to predict
PAs of next τ time steps,

(ŷt+1
i , ŷt+2

i , . . . , ŷt+τi ) = σ(Woh
t
i), (13)

where Wo ∈ R|h
t
i|×τ .

Parking availability approximation
The real-time PA is a strong signal for future PA predic-
tion. However, only a small portion (e.g., 6.12% in Beijing)
of real-time PAs can be obtained through real-time sensors,
which prevents us directly apply real-time PA as a part of in-
put feature. To leverage the information hidden in partially
observed real-time PA, we approximate missing PAs from
both spatial and temporal domain. The proposed method
consists of three blocks, i.e., the spatial PropConv block, the
temporal GRU block, and the fusion block. Note that rather
than approximate a scalar PA ŷ, we learn the distribution of
PA, xp = P (ŷ), for better information preservation. Given
a PA y, we discretize its distribution to a p dimensional one
hot vector y ∈ Rp. The objective of the PA approximation
is to minimize the difference between y and xp.

Spatial based PA approximation
Similar to CxtConv, for each pi ∈ Pu, the PropConv opera-
tion is defined as

xspi =
∑
j∈Ni

αijyj , (14)

where xspi is the obtained PA distribution, αij is the prox-
imity score between pi and pj . Different from CxtConv, the
estimated PA is only aggregated from nearby parking lots
with real-time PA, and we preserve the aggregated vector
representation without extra activation function. The prox-
imity score is computed through same attention mechanism
in Equation (4), but with a relaxed connectivity constraint

eij =

{
1, dist(vi, vj) ≤ max(ε, distknn(vi)), i 6= j

0, otherwise
,

(15)
where distknn(vi) denotes the road network distance be-
tween parking lot pi and its k-th nearest parking lot pj ∈ Pl.
The relaxed adjacency constraint improves node connec-
tivity for more sufficient propagation of observed PA, and
therefore alleviates the data scarcity problem.

Temporal based PA approximation
We reuse the output of the GRU block to approximate real-
time PA from the temporal domain. The difference between
current PA approximation and future PA prediction is here
we employ a different Softmax function. Remember that
in previous step, we have obtained hidden state ht−1i from
GRU, we directly approximate distribution of PA at t by

xtp,ti = Softmax(Wtph
t−1
i ). (16)

This step doesn’t introduce extra computation for GRU, and
the Softmax layer normalizes xtp,ti sum equals one.

Approximated PA fusion
Rather than directly averaging xspi and xtpi , we propose
an entropy-based mechanism to fuse two PA distributions.
Specifically, we weigh more on the approximation less un-
certainty (Hsieh, Lin, and Zheng 2015), i.e., the one with
smaller entropy. Given an estimated PA distribution xi, its
entropy is

H(xi) = −
p∑
j=1

xi(j) logxi(j), (17)

where xi(j) represents the j-th dimension of xi. We fuse
two PA distributions xspi and xtpi as follow:

xpi =
exp(−H(xspi ))xspi + exp(−H(xtpi ))xtpi

Zi
, (18)

where Zi = exp(−H(xspi )) + exp(−H(xtpi )).
The approximated PA distribution xpi is applied for two

tasks. First, it is concatenated with the learned representation
of the CxtConv and fed to the SCConv block for latent node
representation learning. Second, it is combined with the out-
put of the CxtConv and SCConv, xti = xc,ti ⊕ xsc,ti ⊕ xp,ti .
We use xti as the overall representation for each parking lot
pi ∈ P at time step t, and feed it into the GRU module to
generate final PA prediction results.



Model training
Since only parking lots Pl are with observed labels, follow-
ing the semi-supervised learning paradigm, SHARE aims
to minimize the mean square error (MSE) between the pre-
dicted PA and the observed PA

O1 =
1

τ |Pl|

|Pl|∑
i=1

τ∑
j=1

(ŷt+ji − yt+ji )2. (19)

Additionally, in PA approximation, we introduce extra
cross entropy (CE) loss to minimize the error between the
observed PA and approximated PA distributions (i.e., the
spatial and temporal based PA distribution approximation
xsp,ti and xtp,ti ) in current time step t,

O2 = − 1

|Pl|

|Pl|∑
i=1

yti logx
sp,t
i , (20)

O3 = − 1

|Pl|

|Pl|∑
i=1

yti logx
tp,t
i . (21)

By considering both MSE loss and CE loss, SHARE aims
to jointly minimize the following objective

O = O1 + β(O2 +O3), (22)

where β is the hyper-parameter controls the importance of
two CE losses.

Experiments
Experimental setup
Data description. We use two real-world datasets col-
lected from BEIJING and SHENZHEN, two metropolises in
China. Both datasets are ranged from April 20, 2019, to
May 20, 2019. All PA records are crawled every 15 minutes
from a publicly accessible app, in which all parking occu-
pancy information are collected by real-time sensors. We as-
sociate POI distribution (Liu et al. 2019b; Zhu et al. 2016) to
each parking lot and aggregate check-in records nearby each
parking lot in every 15 minutes as the population data. POI
and check-in data are collected through Baidu Maps Place
API and location SDK (Liu et al. 2019a). We chronologi-
cally order the above data, take the first 60% as the training
set, the following 20% for validation, and the rest as the test
set. In each dataset, 70% parking lots are masked as unla-
beled. The spatial distribution of parking lots in BEIJING
are shown in Figure 3. The statistics of the datasets are sum-
marized in Table 1.

Implementation details. Our model and all seven base-
lines are implemented with PaddlePaddle. Following previ-
ous work (Li et al. 2018; Yu, Yin, and Zhu 2018), the PA
is normalized before input and scaled back to absolute PA
in output. We choose T = 12 and select τ = 3 for predic-
tion. We set ε = 1Km and k = 10 to connect parking lots.
The dimension of xc and xsc are fixed to 32, p is fixed to 50.
The layer of CxtConv, SCConv, and PropConv are 2, 1, 1, re-
spectively. We use dot-product attention in this paper. In SC-
Conv, the number of latent nodes is set to K = 0.1N , where

���	��� 
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Figure 3: Spatial distribution of parking lots in BEIJING.

Table 1: Statistics of datasets.
Description BEIJING SHENZHEN

# of parking lots 1,965 1,360
# of PA records 5,847,840 4,047,360

Averaged # of parking spots 210.24 185.36
# of check-ins 9,436,362,579 3,680,063,509

# of POIs 669,058 250,275
# of POI categories 197 188

N is the total number of parking lots. The activation func-
tion in CxtConv and SCConv are LeakyReLU (α = 0.2),
and Sigmoid in other layers. We employ the Adam optimizer
for training, fix the learning rate to 0.001 and set β to 0.5.
For a fair comparison, all parameters of each baseline are
carefully tuned based on the recommended settings.

Evaluation metrics. We adopt Mean Average Er-
ror (MAE) and Rooted Mean Square Error (RMSE), two
widely used metrics (Liang et al. 2018) for evaluation.

Baselines. We compare our full approach with the follow-
ing seven baselines and two variants of SHARE:
• LR uses logistic regression for parking availability pre-

diction. We concatenate previous T steps historical fea-
tures as the input and predict each parking lot separately.

• GBRT is a variant of boosting tree for regression tasks. It
is widely used in practice and performs well in many data
mining challenges. We use the version in XGboost (Chen
and Guestrin 2016), and the input is the same as LR.

• GRU (Chung et al. 2014) predicts the PA of each parking
lot without considering spatial dependency. We train two
GRUs for Pl and Pu separately.

• Google-Parking (Arora et al. 2019) is the parking diffi-
culty prediction model deployed on Google Maps. It uses
a feed-forward deep neural network for prediction.

• Du-Parking (Rong et al. 2018) is the parking availability
estimation model used on Baidu Maps. It fuses several
LSTMs to capture various temporal dependencies.

• STGCN (Yu, Yin, and Zhu 2018) is a state-of-the-art
graph neural network model for traffic forecasting. It



Table 2: Parking availability prediction error given by MAE and RMSE on BEIJING and SHENZHEN.

Algorithm BEIJING (15/ 30/ 45 min) SHENZHEN (15/ 30/ 45 min)
MAE RMSE MAE RMSE

LR 29.90 / 30.27 / 30.58 69.74 / 70.95 / 72.00 24.59 / 24.80 / 25.09 51.31 / 52.36 / 52.80
GBRT 17.29 / 17.81 / 18.40 44.60 / 48.50 / 51.59 13.90 / 14.67 / 14.71 35.05 / 37.98 / 38.09
GRU 18.51 / 18.78 / 19.73 55.43 / 55.92 / 58.64 16.73 / 16.88 / 17.14 46.92 / 47.26 / 47.56

Google-Parking 21.49 / 21.68 / 22.85 57.26 / 59.25 / 60.48 17.10 / 18.33 / 18.69 47.30 / 48.45 / 49.34
Du-Parking 17.67 / 17.70 / 18.03 50.17 / 50.63 / 51.75 13.91 / 14.17 / 14.39 42.66 / 43.24 / 43.56

STGCN 16.57 / 16.44 / 17.10 50.79 / 51.04 / 52.61 13.46 / 13.59 / 13.88 39.26 / 39.96 / 40.29
DCRNN 15.66 / 15.97 / 16.30 46.28 / 47.80 / 48.87 13.11 / 13.19 / 13.89 42.74 / 43.37 / 44.27

CxtGNN (ours) 15.29 / 15.69 / 16.15 45.55 / 46.69 / 47.78 12.39 / 12.73 / 13.09 36.31 / 36.92 / 37.46
CAGNN (ours) 12.45 / 12.77 / 13.20 39.99 / 40.81 / 41.31 10.50 / 10.62 / 10.98 31.86 / 32.12 / 32.83
SHARE (ours) 10.68 / 10.97 / 11.43 32.00 / 32.78 / 33.78 9.23 / 9.41 / 9.66 30.44 / 30.90 / 31.70

(a) Ratio of labeled parking lot (b) Ratio of latent node (c) Effect of T (d) Effect of τ

Figure 4: Parameter sensitivity on BEIJING.

models both spatial and temporal dependency with con-
volution structure. The input graph is constructed as de-
scribed in the original paper but keeps same graph con-
nectivity with our CxtConv.

• DCRNN (Li et al. 2018) is another graph convolution net-
work based model, which models spatial and temporal de-
pendency by integrating graph convolution and GRU. The
input graph is the same as STGCN.

• CxtGNN is a basic version of SHARE, without including
PA approximation and soft clustering graph convolution.

• CAGNN is another variant of SHARE but without in-
cluding the soft clustering graph convolution block.

Overall performance
Table 2 reports the overall results of our methods and
all the compared baselines on two datasets with respect
to MAE and RMSE. As can be seen, our model to-
gether with its variants outperform all other baselines using
both metrics, which demonstrates the advance of SHARE.
Specifically, SHARE achieves (31.8%, 31.3%, 29.9%) and
(30.9%, 31.5%, 30.9%) improvements beyond the state-of-
the-art approach (DCRNN) on MAE and RMSE on BEIJING
for (15min, 30min, 45min) prediction, respectively. Simi-
larity, the improvement of MAE and RMSE on SHENZHEN
are (29.6%, 28.7%, 30.5%) and (28.8%, 28.8%, 28.4%).
Moreover, we observe significant improvement by compar-
ing SHARE with its variants (i.e., CxtGNN and CAGNN).
For example, by adding the PA approximation module,
CAGNN achieves (18.6%, 18.6%, 18.3%) lower MAE and

(12.2%, 12.6%, 13.5%) lower RMSE than CxtGNN on BEI-
JING, respectively. By further adding the SCConv block,
SHARE achieves (14.2%, 14.1%, 13.4%) lower MAE and
(20%, 19.7%, 18.2%) lower RMSE than CAGNN on BEI-
JING. The improvement in SHENZHEN are consistent. All
above results demonstrate effectiveness of the PA approxi-
mation and the hierarchical graph convolution architecture.

Looking further in to the results, we observe all
graph convolution based models (i.e., STGCN, DCRNN
and SHARE) outperform other deep learning based ap-
proaches (i.e., Google-Parking and Du-parking), which con-
sistently reveals the advantage of incorporating spatial de-
pendency for parking availability prediction. Remarkably,
GBRT outperforms Google-parking, GRU, LR, and achieves
a similar result with Du-parking, which validates our ex-
ception that GBRT is a simple but effective approach for
regression tasks. One extra interesting finding is that both
MAE and RMSE of all methods on SHENZHEN is relatively
smaller than on BEIJING. This is possible because the spa-
tial distribution of parking lots is more dense and evenly dis-
tributed in SHENZHEN; therefore they are easier to predict.

Parameter sensitivity
Due to space limitations, here we report the impact of the
ratio of labeled parking lot (i.e., |Pl|/N ), the proportion of
latent nodes in the soft clustering graph convolution with
respect to the total number of parking lot (i.e., K/N ), the
input time step T and the prediction time step τ using MAE
on BEIJING. Each time we vary a parameter, set others to
their default values. The results on BEIJING using RMSE
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Figure 5: Robustness study on BEIJING.

and on SHENZHEN using both metrics are similar.
First, we vary the ratio of the labeled parking lot from 0.1

to 0.9. The results are reported in Figure 4(a). The results
are unsurprising: equipping more real-time sensors in park-
ing lots enables us to more accurately predict PA. However,
equipping more sensors lead to extra economic cost and may
be constrained by policies of each parking lot. Finding the
most cost-effective ratio and exploring optimal sensor distri-
bution are important problems in the future study.

Then, we vary the ratio of the latent nodes from 0.01 to
0.8. For example, there are 1, 965 parking lots on BEIJING,
0.01 corresponds to 20 latent nodes. The results are reported
in Figure 4(b). As can be seen, there is a performance im-
provement by increasing the ratio of latent node form 0.01
to 0.1, but a performance degradation by further increasing
the ratio of the latent node from 0.1 to 0.8. The reason is that
heavily reduce the number of latent nodes reduces the dis-
criminative power of learned latent representation, whereas
too many latent nodes reduces the regularization power of
learned latent representation.

To test the impact of input length, we vary T from 3 to
18. The results are reported in Figure 4(c). SHARE achieves
least errors when T = 12. One possible reason is that an ex-
cessively short-term input can not provide sufficient tempo-
ral correlated information, whereas too long input introduces
more noises for temporal dependency modeling.

Finally, to test the impact of prediction step, we vary τ
from 1 to 6. The results are reported in Figure 4(d). We sep-
arate the result of labeled and unlabeled parking lots sepa-
rately. Overall, labeled parking lots are much easier to pre-
dict. Besides, by increase τ , the error of all parking lots in-
creases consistently. However, we can observe the error of
labeled parking lots are increasing faster, this makes sense
because the temporal dependency between observed PA and
future PA becomes lower when τ goes large.

Effectiveness on different regions
To evaluate the performance of SHARE on different re-
gions, we partition BEIJING into a set of disjoint grid
based on longitude and latitude, and test the performance
of SHARE on each region. Figure 5(a) and Figure 5(b)
plot the averaged MAE of SHARE and averaged number of
parking spot in each region on BEIJING, respectively. Over-
all, the MAE in each region is even except for several out-
liers. We find the performance of SHARE is highly corre-
lated with the averaged number of parking spots in each re-

gion. For example, the MAE on region (116.46, 39.91) and
(116.46, 39.95) are 31.6 and 31.5, which are greater than the
overall MAE 10.68. Meanwhile, the averaged parking spot
of these two regions are 601 and 367, significantly greater
than overall averaged parking spot 210.24. This is possible
because for the same ratio of parking availability fluctuate,
parking lot with a larger number of parking spot will have
larger MAE. This result indicates in the future further op-
timization can be applied to these large parking lots to im-
prove the overall performance.

Related Work
Parking availability prediction. Previous studies on park-
ing availability prediction mainly fall in two categories, con-
textual data based prediction and real-time sensor based
prediction. For contextual data based prediction, Google-
parking (Arora et al. 2019) and Du-parking (Rong et al.
2018) predict parking availability based on indirect sig-
nals (e.g., user feedbacks and contextual factors), which may
induce an inaccurate prediction result. For real-time sensor
based prediction, study in (Rajabioun and Ioannou 2015)
proposes an auto-regressive model and study in (Fusek et al.
2013) proposes a boosting method for parking availability
inference. Above approaches are limited by economic and
privacy concerns and are hard to be scaled to all parking lots
in a city. Moreover, all the above approaches don’t fully ex-
ploit non-Euclidean spatial autocorrelations between park-
ing lots, which limits their prediction performance.
Graph neural network. Graph neural network (GNN) ex-
tends the well-known convolution neural network to non-
Euclidean graph structures, where the representation of each
node is derived by first aggregating and then transforming
representations of its neighbors (Velickovic et al. 2018). It
is worth to point out that the idea of our soft clustering
graph convolution is partially inspired by (Ying et al. 2018),
but our objective is to capture global spatial correlation for
node-level prediction. Due to its effectiveness, GNN has
been successfully applied to several spatiotemporal forecast-
ing tasks, such as traffic flow forecasting (Li et al. 2018; Guo
et al. 2019) and taxi demand forecasting (Geng et al. 2019;
Wang et al. 2019). However, we argue these approaches
either overlook contextual factors or global spatial depen-
dency and are not tailored for parking availability prediction.

Conclusion
In this paper, we present SHARE, a city-wide parking avail-
ability prediction framework based on both environmen-
tal contextual data and partially observed real-time park-
ing availability data. We first propose a hierarchical graph
convolution module to capture both local and global spa-
tial correlations. Then, we adopt a simple yet effective GRU
module to capture dynamic temporal autocorrelations of
each parking lot. Besides, a parking availability approxima-
tion module is proposed for parking lots without real-time
parking availability information. Extensive experimental re-
sults on two real-world datasets show that the performance
of SHARE for parking availability prediction significantly
outperforms seven state-of-the-art baselines.
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