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ABSTRACT
Public transportation plays a critical role in people’s daily life. It

has been proven that public transportation is more environmen-

tally sustainable, ecient, and economical than any other forms of

travel [3, 15]. However, due to the increasing expansion of trans-

portation networks and more complex travel situations, people are

having diculties in eciently nding the most preferred route

from one place to another through public transportation systems.

To this end, in this paper, we present Polestar, a data-driven engine

for intelligent and ecient public transportation routing. Speci-

cally, we rst propose a novel Public Transportation Graph (PTG) to

model public transportation system in terms of various travel costs,

such as time or distance. Then, we introduce a general route search

algorithm coupled with an ecient station binding method for e-

cient route candidate generation. After that, we propose a two-pass

route candidate ranking module to capture user preferences under

dynamic travel situations. Finally, experiments on two real-world

data sets demonstrate the advantages of Polestar in terms of both

eciency and eectiveness. Indeed, in early 2019, Polestar has been
deployed on BaiduMaps, one of the world’s largest map services. To

date, Polestar is servicing over 330 cities, answers over a hundred
millions of queries each day, and achieves substantial improvement

of user click ratio.
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(a) Ranked route list. (b) Details of the rst route.

Figure 1: Examples of user interfaces of Polestar. (a) A ranked
list of public transportation routes from Shanghai New
World to the Oriental Pearl Tower, two landmarks in Shang-
hai, China. (b) The details of the rst route in (a), which is
a metro based transportation route. The rst route is fastest
and is with least number of transfer.

1 INTRODUCTION
Public transportation is a form of transit that oers people travel

together along designated routes. In recent decades, public trans-

portation has become ubiquitous, and we have witnessed the rapid

increase in access to and use of the public transportation system.

For example, in 2018, the China government invested more than

$74 billion
1
in public transportation infrastructure and the public

transportation systems took over 120 billion trips
2
. In fact, public

transportation is playing a key role in the daily life of urban resi-

dents. Public transport modes such as bus, metro, and light rail can

help reduce urban trac jam, improve urban transportation net-

work eciency, and ultimately reduce urban commute costs [3, 15].

However, despite the popularity and various advantages of public

transportation, it is challenging for users to nd the most preferred

routes from a variety of routes, because of the complex public trans-

portation networks, new emerging public transportation tools (e.g.,
vanpooling, on-demand ride-hailing, shared bike, etc.), and the

dynamic travel context (e.g., transportation station distribution,

weather, travel intention, etc.). As a result, public transportation
routing services such as Baidu Maps and Google Maps become

essential tools in people’s daily lives.

1
http://www.xinhuanet.com/english/2019-02/13/c_137819050.htm

2
http://xxgk.mot.gov.cn/jigou/zhghs/201905/t20190513_3198918.html

https://doi.org/10.1145/3394486.3403281
http://www.xinhuanet.com/english/2019-02/13/c_137819050.htm
http://xxgk.mot.gov.cn/jigou/zhghs/201905/t20190513_3198918.html


While geographic routing is well-studied, the predominant re-

search and applications are mostly about routing with road net-

works, only a few works focus on public transportation routing.

For example, Efentakis et al. [10] formulated the public transporta-

tion routing problem as a database query and proposed a pure SQL

based routing framework. Wang et al. [24] and Delling et al. [8]
modeled public transportation networks as a timetable graph and

proposed a labeling based index to speedup shortest path queries.

However, all the above approaches mainly focus on city-wide public

transportation routing, and only consider single or a few transport

modes (bus and metro). More importantly, all the above approaches

focus on optimizing static criteria (e.g., earliest arrival, latest depar-
ture, shortest travel time), but overlook the user preference under

dynamic situational context, which is important for user decision

making. For example, metro may be a more preferable choice during

morning rush hour or under severe weather condition, whereas the

cheapest route may be a better choice when one’s trip purpose is

not in an emergency.

In fact, building a public transportation routing engine has far

beyond searching shortest paths. The major challenge comes from

two aspects. First, the rapid expansion of the public transporta-

tion network induces highly overlapped transportation lines. The

alternative sub-routes and the ultimate line transfer lead to the com-

binatorial explosion of the route search space. The rst challenge

is how we can eciently generate feasible route candidates. Sec-

ond, the user preference is highly dynamic and depends on many

factors such as price, time period, and weather condition. Simply

sorting routes based on static criteria such as distance or time fails

to deliver a satisfactory user experience. So, the second challenge

is how to rank route candidates by characterizing user preference

under dynamic travel context.

To tackle above challenges, in this paper, we present Polestar, an
intelligent public transportation routing engine. We hope to share

our practical experience on how to build an intelligent, ecient,

and national-wide public transportation routing service. In early

2019, Polestar has been deployed on Baidu Maps, one of the world’s

largest navigation apps, servicing over 330 cities in mainland China.

Figure 1 shows the user interface of Polestar on Baidu Maps app.

Contributions. To the best of our knowledge, this is the rst

work introducing a deployed national-wide public transportation

routing engine that answers a hundred millions of queries each

day. Specically, we rst propose the public transportation graph,

PTG, that assembles heterogeneous public transportation lines into

a unied structure. PTG elegantly models various travel costs and

reduces routing complexity by mapping public transportation lines

into a set of physical and virtual graphs. Beside, we design ecient

route candidate generation algorithms, coupled with an ecient

station binding method. In average, route candidate generation can

be done in tens of milliseconds in Polestar. Moreover, we propose

a two-pass route candidate ranking pipeline to capture user prefer-

ence under dynamic travel context. The route candidate ranking

pipeline achieves 9.4% relative improvement of user click ratio in

the production environment. Finally, we develop a series of op-

timization techniques to reduce web service latency and discuss

several deployment issues. Extensive experiments on urban-scale

real-world datasets show that Polestar achieves less than 250ms
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Figure 2: The framework overview of Polestar.

latency in average and exhibits excellent ranking performance com-

pared with six baselines.

2 FRAMEWORK
Figure 2 shows the framework of Polestar, which consists of ve

components, the Data warehouse, the Public transportation graph
construction, the Route candidate generation, the Route candidate
ranking and the Front end. The Data warehouse stores a wide range
of datasets on a distributed cluster, such as the transportation sta-

tion data and the transportation line data. Based on transportation

line related datasets in the Data warehouse, the Graph construc-
tion module compiles the PTG, which including a set of intra-city

graphs. When a routing query is submitted, the Route candidate
generation module searches a set of feasible route candidates based

on the PTG. Concretely, we rst bind the origin and the destination

to proper stations based on a pre-computed station cache. After

that, a bidirectional shortest path search algorithm is applied on

a set of virtual graphs simultaneously to generate set of feasible

route candidates, which later will be translated to human-readable

routes based on the physical graph. Once a set of route candidates

is obtained, a two-pass Route candidate ranking module is invoked

for context-aware ranking. Specically, the primary ranking rst

partitions route candidates into several route groups and then se-

lect a small subset of diversied route candidates. After that, the

re-ranking step constructs a rich set of features and applies a ma-

chine learning based model to decide the nal rank of each route

candidate. Finally, the ranked route list is returned to the Front end.
There are two interfaces in the Front end: the App interface for

mobile devices and the webpage interface for PC.

3 DATA DESCRIPTION AND ANALYSIS
This section introduces datasets used in Polestar, with a prelimi-

nary data analysis. In this paper, we use two datasets, Shanghai

and Guangzhou. Both of them are randomly sampled from 60

consecutive days in early 2019. The statistics of two datasets are

summarized in Table 1.



(a) Spatial distribution of destinations (b) Feedback distribution (c) Distance distribution (d) Day distribution

Figure 3: Distributions of the Shanghai dataset: (a) the spatial distribution of query destinations; (b) the distribution of routes
with user feedbacks; (c)the distribution of travel distances; (d) the distribution of travel time (hour).

Table 1: Statistics of datasets.
Data description Shanghai Guangzhou

Query log data # of sessions 5,900,463 2,750,316

Geographical data

# of stations 68,687 65,525

# of lines 3,341 2,839

# of road segments 406,195 284,168

# of POIs 1,594,684 982,059

Meteorological data # of records 23,424 16,104

Geographical data. We use large-scale geographical datasets

to build Polestar, including: (1) the transportation station data, (2)

the transportation line data, (3) the road network data, and (4) the

point of interest (POI) data [31]. All geographical data are collected

from (i) professional surveyors employed by Baidu Maps, (ii) the

crowdsourcing platform in Baidu. Public transportation stations

are fundamental data to build the PTG. Besides, geographical data

contains rich semantic information regarding user mobility [28, 32].

For example, regional transportation station density inuences the

public transportation accessibility of a specic area, and the POI

type of destination reects user travel intention [23].

Query log data. Query log data captures user interactions with

Baidu Maps. According to the user interaction loop, the query log

data generated during user-App interactions can be further catego-

rized into query records, routes records, and feedback records. Briey,
a query record indicates a route query from a user on Baidu Maps, a

routes record contains a list of feasible candidate routes present to

the user, and a feedback record represents user’s preference of given

candidate routes. Dierent from traditional recommenders [14] col-

lect user clicks as feedback, we extract more reliable feedbacks to

distinguish better routes, which include add route to favorites, share
route with others, screenshot and navigation.

Meteorological data. Meteorological conditions are critical fac-

tors for trip planning. For example, a route with less walk distance

is preferable in the case of snow, rain, and severe air pollution. Each

meteorological data point consists of a location, a timestamp, the

weather, the temperature, the wind strength, the wind direction,

and the Air Quality Index (AQI). We use the meteorological data

from an online meteorology website of the Chinese government.

Data analysis. To further understand the distributions of each

dataset, we use the dataset Shanghai for illustration. We observe

similar data distributions in other cities and time periods. Figure 3(a)

shows the distributions of destinations in query records. As can be

seen, most destinations fall in the downtown areas in Shanghai.

Figure 3(b) plots the distribution of user-preferred routes (i.e., route
with user feedbacks), the ratio of least congestion, fastest, shortest,

(a) Transportation lines on the map.
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(b) Physical transportation graph.

Figure 4: Example of transportation graph construction.
direction coherent, least trac light and cheapest are 58.9%, 55.6%,

57.1%, 56.6%, 52.2% and 61.5%, respectively. Since a route may be

the best in multiple aspects (e.g., least congestion and fastest), the

overall ratio is greater than 100%. Overall, we observe multiple

factors users may concern when planning a trip. Figure 3(c) depicts

the spatial distribution of user feedbacks. We observe over 80% trips

are within 35Km and trips of the distance around 20Km are most

popular, which provides extra information for public transporta-

tion routing. Finally, Figure 3(d) shows the temporal distribution

of user feedbacks. Overall, we observe the user feedback ratio at

daytime is higher than night, and the distribution on workday and

weekend are also dierent. Above observations motivate us to in-

corporate multi-source urban data to model the dynamic travel

context, and build a machine learning based model for intelligent

route recommendation.

4 PUBLIC TRANSPORTATION GRAPH
CONSTRUCTION

One major design objective of Polestar is to provide an ecient

national-wide public routing service. However, it is computationally

expensive to route on a unied public transportation graph [10, 24]

that contains millions of transportation lines. In this section, we

propose the public transportation graph to reduce the route candi-

date generation complexity on various travel costs. Specically, the

unied graph structure partitions transportation lines into a set of

disjoint intra-city publication transportation graphs, the route can-

didate search space is therefore bounded into a relatively smaller

range. Moreover, the public transportation graph decouples each

subgraph into one physical graph and multiple virtual graphs, where
each virtual graph corresponds to a dierent travel cost.

Consider a set of public transport modesM = {m1,m2, . . . ,mi }.

A physical transportation station pi ∈ P is represented as a geo-

graphical coordinate (φi , λi ). Note that pi can be passed by multi-

ple transportation lines. A Transportation line is dened as a tuple



(mi , li ), wheremi ∈ M is a public transport mode, li = p1 → p2 →
· · · → pn is an ordered physical transportation station list. In prac-

tice, a transportation line may be a bus line, a metro line, a ferry

route, etc.

Definition 1. (Physical transportation graph) A physical
transportation graph is a 5-tuple GP = (P ,E,O,D,LE ), where P is
a set of physical transportation stations, E is a set of edges between
physical transportation stations, O is a mapping set P → E assign-
ing to edge its origin station, D is a mapping set P → E assigning
to edge its destination station, and LE is a mapping set marks the
transportation line of each edge.

The physical transportation graph is a directed multi-graph,

where each edge is with its own identity. Give two physical trans-

portation stations pi and pj , there is an edge from pi to pj if and
only if there exists a transportation line pass from pi to pj without
transfer. Note that there may have multiple edges from pi to pj if
there are multiple transportation lines pass from pi to pj . Consider
a set of transportation lines shown in Figure 4(a), Figure 4(b) depicts

the corresponding physical transportation graph. For example, as

line 3 passes p1, p2 and p3, there are three edges (p1,p2), (p1,p3) and
(p2,p3) labeled as line 3. Besides, there are two transportation lines

that pass from p5 to p6, from which we derive two edges between

the corresponding nodes.

The advantages of the physical transportation graph are two-

fold. First, it ts heterogeneous transportation lines into a unied

graph representation, which eases subsequent route candidate gen-

eration. Second, directly connecting transportation stations in the

same transportation line signicantly reduces the search depth in

route generation, therefore increasing the number of feasible route

candidates in xed search depth.

Similar to the physical transportation station, we dene virtual
transportation station vi ∈ V based on the physical transportation

station, each of which corresponds to an individual transportation

line. In other words, a physical transportation station is mapped

to multiple virtual transportation stations, and each virtual trans-

portation station corresponds to a dierent transportation line.

Definition 2. (Virtual transportation graph) A virtual trans-
portation graph is dened as a 4-tuple GV = (V ,E, SPV , cE ), where
V is a set of virtual transportation stations, E is a set of edges between
virtual transportation stations, SV P is a table V → P which maps
virtual transportation stations to physical transportation stations, and
cE is a mapping set describes the weight of each edge.

The relation between virtual transportation station and physical

transportation is many-to-one. For example, given the physical

transportation graph shown in Figure 4(b), virtual station v
p5
1

and

v
p5
2

are mapped to physical transportation station p5. Two edges be-

tween p5 and p6 are mapped to two disjoint virtual edges (v
p5
1
,v

p6
1
)

and (v
p5
2
,v

p6
2
), associated with dierent travel cost. In Polestar,

a virtual transportation graph is stored in two parts, the station

mapping table, and the virtual graph table.

Currently, each physical transportation graph corresponds to

three virtual transportation graphs, i.e., the distance graph, the

travel time graph, and the walk distance graph. All three virtual

graphs are isomorphism, except that the weight of each edge is

Figure 5: Example of station binding. s is the current loca-
tion, u1-u6 are road intersections, p1-p2 are physical trans-
portation stations, r1-r6 are partitioned grids, c is projected
point from s to (v1,v2).

computed from dierent cost function. The weight of each edge is

estimated from query log data and historical road conditions. Note

that other types of virtual graphs can be extended on demand.

Based on the physical graph and virtual graphs for public trans-

portation networks in each city, we construct the public transporta-
tion graph.

Definition 3. (Public transportation graph (PTG)) A PTG is
dened as a set of physical transportation graphs and virtual trans-
portation graphs GH = {GP

1
,GP

2
, . . . ,GV

1
,GV

2
, . . . }. PTG partitions

the public transportation graph into a set of disjoint public trans-
portation graphs. Each sub-graph corresponds to an intra-city public
transportation network.

PTG partitions large-scale graphs into a set of subgraphs and

therefore reduces the candidate route generation complexity.

5 ROUTE CANDIDATE GENERATION
In this section, we describe the detailed process of route generation,

including station binding and route candidate search.

5.1 Station binding
In general, the origin and the destination of a query are arbitrary

geographical locations. A primary step for route candidate gener-

ation is binding the origin (resp. destination) location to physical

transportation stations the user can get on (resp. get o). A straight-

forward approach is computing the Euclidean distance between the

origin (resp. destination) location with each surrounding physical

station and select top-k nearest stations as getting on (resp. get-

ting o) stations. However, as the distance between the location

and each station is constrained by the pedestrian road network,

the actual road network distance may be much longer than the

point-to-point Euclidean distance, which may lead to a sub-optimal

binding result. For example, in Figure 5, the Euclidean distance

from location s to p1 is less than from s to p2, however, the road
network distance from location s to p1 is greater than from s to p2.
Another option would be to map the location to a road segment and

then compute the road network distance on the y. However, this

approach leads to great online computation overhead and induce

eciency degradation. In Polestar, we employ a caching method to

bind geographical locations to stations more accurate and ecient.



The proposed station binding method builds an online-oine

framework as follow. Given a location s , a road networkGR = (V ,E),
and stations pi ∈ P , we rst build an oine nearest station cache.

Specically, we partition the city into a set of disjoint grid rk ∈ R,
and place each road intersection ui ∈ V on this grid. For each

road intersection ui , we apply Dijkstra’s algorithm to select a set

of stations such that d(ui ,pj ) < λ, where d(·) is the road network

distance and λ is a maximum distance threshold. Note that we

project all stations to the nearest road segment. We then group the

distance information of each station by region and stored them in

the cache. In the online binding process, we rst map the location

s to the nearest POI. Each POI is projected to a reachable road

segment associated with a walking distance. Take Figure 5 again

for example, s is projected to (u1,u2) at c , the overall distance from
the location s to a station p1 can be derived as

d(s,p1) = d(s, c) + d(c,u2) + d(u2,p1), (1)

where d(s, c) is the walk distance from location s to road segment,

d(c,u2) is the road network distance from the projected point c
to road intersection u2, and d(u2,p1) is the road network distance

pre-stored in cache. As d(s,p1) > d(s,p2), p2 is selected as the best

match for the station.

5.2 Route candidate search
Given origin and destination stations, we model the route candi-

date search as a vertex-to-vertex shortest path search problem. The

intra-city routing generates route candidates in three steps. First,

a bidirectional Dijkstra’s algorithm [19] is applied to each virtual

graph to generate feasible route candidates. The search procedure

stops when a criterion is satised, e.g., maximum search time or the

maximum number of route candidates. Second, route candidates

are mapped to physical transportation stations and physical trans-

portation lines via the route translation module. Detailed route

information such as price, ETA, route shape is attached to each

route candidate. Third, a route lter and route augmentation mod-

ule are invoked to augment route candidate diversity and lter out

less competitive route candidates (e.g., routes containing cycles).

For route augmentation, a greedy algorithm is applied to replace

each route segment. Recall the the physical transportation graph

is a multi-graph, route augmentation replaces one edge with same

origin and destination station in each step. The detailed procedure

of route candidate search is shown in Algorithm 1.

Take Figure 4 as a running example. Assume p1 as the origin sta-

tion and p6 as the destination station, bidirectional Dijkstra’s algo-

rithm is rst performed on three virtual graphs in parallel. Assume

three route candidates on virtual graph (v
p1
1
,v

p6
1
)), (v

p1
1
,v

p5
2
,v

p6
2
))

and (v
p1
1
,v

p2
2
,v

p6
2
) are found, three route candidates are translated

to (p1,p6) in Line 1, (p1,p5,p6) in Line 1 then Line 2, and (p1,p2,p6)
in Line 3 then Line 2, via the physical graph. After that, each route

segment is replaced by alternative transportation lines to augment

route candidate. For example, in the route (p1,p5,p6), the segment

(p5,p6) in Line 2 can be replaced to Line 1 and will be ltered out

later since the new route is identical to (p1,p6) in Line 1. As a result,

three feasible route candidates are returned.

Algorithm 1: Route candidate search
Input: Physical graph Gp

, virtual graphs Gv
1
,Gv

2
, . . . ,

origin station o, destination station d , maximum

search time t , maximum route candidate set size k .
Output: C: a set of feasible route candidates.

1 Set C ← ∅;

2 while |OpenSet | ≤ k or runninд_time ≤ t do
3 for each virtual graph Gv

i do
4 virtual_routes ← BidirectionalDijkstra(Gv

i , o, d);

5 physical_routes ← Translation(Gp
, virtual_routes);

6 candidate_routes ← Augmentation(Gp
,

physical_routes);

7 for each ci ∈ candidate_routes do
8 C ← C ∪ ci ;

9 return C;

10 Function BidirectionalDijkstra (Gv , o, d):
11 while forward search and reverse search meet on vertex x

do
12 forward search from o on the original graph with a

label df ;

13 reverse search from d on the reversed graph with a

label dr ;

14 return route meet on x of cost df + dr ;

15 Function Augmentation (Gp , physical_routes):
16 new_routes ← ∅ for physical_route ∈ physical_routes

do
17 for route_seдment ∈ physical_route do
18 new_route ← replace route_seдment to another

edge in Gp
with same origin station and

destination station;

19 new_routes ← new_routes ∪ {new_route}

20 return new_routes;

6 ROUTE CANDIDATE RANKING
In this section, we describe details of the route candidate ranking
module, including the primary ranking and the re-ranking. The pri-

mary ranking derives a diversied route candidate subset whereas

the re-ranking orders route based on users’ preference under dy-

namic travel context.

6.1 Primary ranking
In general, the route candidate generation produces a route candi-

date set contains over 50 route candidates, which is time-consuming

to apply a full-edged machine learning based ranking model di-

rectly. Therefore, we rst employ a light-weight primary ranking

to reduce the size of the route candidate set further. Concretely,

primary ranking reduces the size of the route candidate set in

three steps. First, lter out inferior route candidates, such as sim-

ilar routes, detour routes, and routes with bad transfer combina-

tions (e.g., metro-bus-metro). Second, group route candidates based

on transport modes, such as bus, metro, mixed transport modes and



so on. The grouping step guarantees the diversity of the nal route

candidate set. Third, sort routes in each group according to a cost

function. The cost function considers multiple factors such as travel

time, distance, and the walk distance. The winning route candidates

in each group will be passed for re-ranking. Note that all preserved

route candidates will be visualized in front-end, re-ranking will

further decide the order of each route candidate. In Polestar, the
primary ranking reduces the route candidate set size to 5-7. The

primary ranking step can be done in 100ms.

6.2 Re-ranking
After a smaller route candidate set is obtained, we apply a more

expensive machine learning based re-ranking model. In this phase,

more complex information such as real-time bus, available ticket,

and the ticket price are incorporated. We rst describe situational

features we construct for re-ranking.

6.2.1 Feature construction. Feature engineering is a critical step

to build an expressive ranking model. Proper feature engineering

process can improve the model performance and speed up the con-

vergence of optimization [29]. Based on explorative data analysis

in Section 3, we construct ve categories of situational features:

route features, spatial features, temporal features, meteorological

features, and augmented features.

Route features. For each route, we extract ETA, Estimated wait-
ing time, Price, Ticket availability, Road network distance, Road con-
gestion index, Start walk distance, End walk distance, On transport
distance and Number of transfer from plan records. The Road net-
work distance is the real travel distance. The Road congestion index
is the congestion score of each route. For transportation not on

road network (e.g., metro), the index is set to zero. The Start walk
distance (resp. End walk distance ) is the walk distance in the be-

ginning (resp. in the end). The Estimated waiting time is calculated
based on real-time bus information and bus time table.

Spatial features. User’s preference at dierent locations may

vary. We rst extract the city and the district the origin and desti-

nation belongs to. Based on the POI data, we extract Primary POI
category and Secondary POI category. Similar to station binding,

we partition the city into a set of grid. For each origin and desti-

nation, we further construct statistical features for corresponding

grid. Specically, we construct the regional POI distribution vec-

tor, in which each dimension indicate the POI count of each POI

category. We further compute regional transportation station distri-
bution, in which each dimension represents the count of transport

stations (e.g., bus stations, metro stations, etc.). We also compute

road network density and station density for each grid. Note that the

transportation station data used for re-ranking is same as used for

PTG compilation.

Temporal features. The user preference at a dierent time may

also dier. For example, themetromay be a better choice at morning

rush hour, whereas the night bus is a possible choice at midnight.

We construct Hour, Minute, Day of week, Day of month, Holiday,
Route in service as temporal features.

Meteorological features.We constructmeteorological features

from the meteorological dataset. We extractWeather, Temperature,
Wind speed, Wind direction and Air Quality Index (AQI) as the

meteorology features. Specically, Weather and Wind direction are

categorical features whereas Temperature, AQI, Wind speed and

Humidity are numerical features. The weather is categorized as

Sunny, Rainy, Overcast, Cloudy, Foggy and Snow. We discretize

wind direction to 16 categories. The AQI is an integer value. There

are 13 wind strength levels from 0 to 12. The AQI is an integer that

represents the air pollution level.

Feature augmentation. We further augment features from two

aspects. First, we compute statistical features to characterize the

distribution of each feature. For route list, we computeMin,Max
and Averaдe of each route, and compute the dierence between

basic features and statistical features. For example, for distance

we compute Max road network distance, Min road network distance,
and Average road network distance over all routes in the route list.

We compute ETA − MinETA to measure the relative travel time

advantage of a route. Second, we combine features from dierent

domains to build combinational features. For example, we combine

route features and temporal features to capture the route statistics at

dierent time period (i.e., hour, day of the week). We combine route

and spatial features to capture the dependency between the POI

category and transport mode preference. Combinational features

further capture correlations between each feature category.

6.2.2 The model. Given a query qi , a list of route candidates Xi =

{xi
1
, xi

2
, . . . }, the re-ranking model aims to decide the order of

each route candidate. Specically, each xij is represented as a m

dimensional feature vector, e.g., ETA, destination POI type, and

weather. We propose a pair-wise learning to rank model based on

GBDT (Gradient Boosting Decision Tree) [11]. GBDT has proven

performs well on tasks with sparse and high-dimensional features.

In the learning procedure, the GBDT generates a set of tree classi-

ers G = {д1(·),д2(·), . . . ,дk (·)} sequentially. The rationale behind
GBDT is that the model is able to construct a robust classier by

using an ensemble of weak classiers д(·) to generate the nal

prediction result

ŷ = f (xi ) =
k∑
j=1

дj (xi ),дj ∈ F , (2)

where ŷ is the estimated result of instance xi , дj (·) is a tree classier
learned in step j.

Rather than training each route candidate individually, we build

a more informative training set that includes the relative preference

relationship. Specically, given qi and Xi
, we construct training

instances as

S = {(xi
1
, xi

2
)|xi

1
� xi

2
, i = 1, . . . , |Xi |}, (3)

where � indicate xi
1
is a more preferable choice than xi

2
for qi . In

fact, S is a partially ordered set. The partial order relationship is

derived by the order of user feedback records. For example, if a user

add xi
1
to favorite before xi

2
in same query, we have xi

1
� xi

2
. With

the training set, we dene the pair-wise ranking loss function as

L(qi ,S) =
1

2

N∑
j=1
(max{0,τ − (f (xi

1
) − f (xi

2
))})2 − λ1τ

2 +
λ2
2

‖Xi ‖2,

(4)

where f (·) is the expected ranking function need to learn. To avoid

a trivial optimal f (·) to be obtained, i.e., a constant function, we
further add a constant gap τ ∈ (0, 1] to the loss function. λ1 and λ2



are hyper-parameters for the constant gap and the L2 regularization,
respectively. We introduce L2 regularizer into the loss function to

alleviate overtting in model training.

Given the above loss function, a functional gradient descent [30]

is then applied to optimize the ranking function. In stepk , a gradient
boosting tree дk (·) is generated, the ranking function is updated as

fk (x
i ) =

k fk−1(xi ) − βдk (xi )
k + 1

, (5)

where β is the learning rate.

7 DEPLOYMENT
In this section, we discuss several important implementation and

deployment issues, in both the oine processing phase and the

online processing phase.

7.1 Oline processing
The oine processing handles four major tasks, the data manage-
ment, the transportation graph compilation, the station cache update,
and the re-ranking model training.

Data management.The Data warehouse stores all datasets on a

Hadoop cluster. The datasets can be categorized into static datasets

and dynamic datasets. Static datasets include transportation station

data, transportation line data, road networks, and POI data, whereas

dynamic datasets include query log data, real-time bus data, and

trac condition data. Static datasets are updated periodically (from

day to months), and dynamic datasets are updated in real-time.

Transportation graph compilation. Real-world transporta-

tion systems are highly dynamic. Each day, new transportation

lines open and existing transportation lines are cancelled or ad-

justed. We propose a graph compilation pipeline to automatic the

PTG updating process. In each day, the up-to-date transportation

station data, transportation line data, road network data, and a snap-

shot of trac condition data are loaded into the data warehouse.

The mapping between transportation stations and transportation

lines is recompiled to update physical graphs; the mapping between

transportation lines and road network is recompiled to update the

edge weight of virtual graphs.

Station cache update. Similar to the transportation graph com-

pilation pipeline, the station cache used for station binding is also

updated every day to accurately measure the cost to each station.

The station cache is stored as a hash table in a Redis database.

Re-ranking model training. The re-ranking model relies on

multiple large-scale heterogeneous data sets. We employ a dis-

tributed platform, Bigow (http://bigow.baidu.com), for the data

preprocessing. Specically, we rst integrate each data set into a

large fact table by using the JOIN operator, then transform the fact

table to a feature table, as described in Section 6.2.1. All numerical

features are scaled to [0, 1] and all categorical features are processed

as one-hot encoded vectors. Once the input feature is ready, we

employ XGBoost [4], a high performance distributed gradient boost-

ing library for model training. We use 5-fold cross-validation, and

the re-ranking model is updated on a daily basis. The model takes

the two most recent months of data as input to exclude seasonal

changes. We use a server with 64 Intel Xeon E5-2620v4 CPU, 120GB

memory, and 2TB disk for model training.

(a) Routing on Shanghai (b) Routing on Guangzhou

Figure 6: Running time v.s. distance.

7.2 Online processing
At running time, the response time (a.k.a. service latency) is crucial
to user experience. We adopt BRPC (https://github.com/brpc/brpc),

an open-sourced scalable web service framework for online service.

In online processing, six components are involved. First, when a

query is submitted, the origin and destination are binded to trans-

portation stations. Second, the routing executor generates a set

of feasible route candidates. Third, the primary ranking is then

applied to select a small set of route candidates. Fourth, the fea-

ture vector for re-ranking is retrieved from the data or collected

from other online services. Fifth, the nal order of each route is

decided by the re-ranking model. Finally, each route is returned to

the frontend associated with auxiliary data such as road congestion

and real-time bus information. The PTG, the station cache, and the

re-ranking model are duplicated in multiple data centers through

BRPC. These data centers are distributed in dierent provinces in

China to reduce the latency from dierent geographical locations

and balance the workload.

8 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate: (1) the

eciency of Polestar, including the running time of route candidate

generation and route candidate ranking, (2) the eectiveness of

Polestar, including the overall ranking performance and the feature

importance analysis, and (3) the online assessment.

8.1 Eciency
We rst evaluate the overall running time of Polestar. Specically,
we exam the performance of Polestar for processing queries of

dierent distances, including both end-to-end and component-wise

running time. For each distance interval, we randomly extract 1, 000

queries from the log and calculate the averaged running time.

Figure 6(a) and Figure 6(b) report the running time of queries

on Shanghai and Guangzhou. We observe that Polestar achieves
promising running time for queries of dierent distances. For queries

shorter than 10 Km, the overall running time is less than 200 ms.

When query distance increases to 100 km, the running increases to

300 ms, indicating Polestar achieves sub-linear scalability in terms

of query distance. In Figure 6(a) and Figure 6(b), we break the run-

ning time into routing and ranking phases for further comparison.

It can be seen that the routing phase takes less than 50ms for all

queries, whereas the running time of ranking varies from 50ms

to 200ms. This indicates that the ranking phase can be further op-

timized to reduce the overall latency. Overall, Polestar achieves
promising eciency performance.



Table 2: Overall ranking performance.

Model NDCG@1 NDCG@3 NDCG@5

Shanghai

Shortest 0.428 0.599 0.803

Fastest 0.306 0.513 0.761

Least transfer 0.778 0.853 0.926

LR 0.878 0.902 0.955

GBDT 0.921 0.922 0.966

DNN 0.9261 0.9189 0.9666

Polestar 0.937 0.959 0.979

Guangzhou

Shortest 0.472 0.632 0.818

Fastest 0.334 0.540 0.771

Least transfer 0.832 0.889 0.944

LR 0.887 0.91 0.958

GBDT 0.916 0.92 0.965

DNN 0.9245 0.9205 0.9669

Polestar 0.934 0.954 0.977

8.2 Eectiveness
Then we evaluate the overall ranking performance of Polestar and
analyze the usefulness of our features.

Metric. We adopt Normalized Discounted Cumulative Gain

(NDCG) [25, 27], a widely used metric in search engines and rec-

ommender systems, to evaluate the ranking performance. In this

paper, we compare NDCG@1, NDCG@3 and NDCG@5.

Baselines. We compare Polestar with three statistical baselines

and three machine learning based baselines. Shortest rank route

candidates according to the overall route distance. Fastest rank
route candidates according to the overall travel time. Least trans-
fer rank route candidates according to the number of transfer of

each route. LR rank route candidates via the well-known logistic

regression model. The input feature is same as Polestar described
in Section 6. GBDT uses the same learning model in Polestar, the
only dierence is GBDT employs a point-wise cross-entropy loss

function [20]. DNN constructs deep neural network contains two

fully connected hidden layers as in [2], applies Relu as the activation

function, and employ Adam for optimization.

8.2.1 Overall ranking result. Table 2 depicts the overall ranking per-
formance of Polestar and six baselines with respect to NDCG@k . As
can be seen, Polestar signicantly outperforms six baselines on both

Shanghai and Guangzhou using all three NDCG metrics. Specif-

ically, Polestar achieves 0.93+ NDCG@1 score on both datasets,

indicating that most routes with user feedbacks are successfully

ranked at top-1 in our engine. Besides, we observe that all machine

learning based models achieve better ranking performance than

statistical based methods, which further proves that our tailored

feature construction procedure successfully captures dynamic con-

text factors in user queries. Moreover, the performance of Polestar
is (1.6%, 3.7%, 1.3%) and (1.8%, 3.4%, 1.2%) higher than GBDT on

two datasets on (NDCG@1, NDCG@3, NDCG@5), demonstrating

the power of our pair-wise ranking function. Finally, we observe

Polestar achieves slightly better results than DNN, further illus-

trate the eectiveness of tree based models on capturing non-linear

dependencies. Besides, the computational cost of Polestar is sig-
nicantly lower than deep neural network, which is an important

advantage of Polestar as an online service.

8.2.2 Feature importance analysis. To evaluate the eectiveness of

our features, Table 3 reports the top-10 most important features in

Table 3: Top-10 features ranked by information gain.

Rank Feature name Relative gain

1 ETA 1

2 ETA - Min ETA 0.899

3 Walk distance 0.785

4 Walk distance - Min walk distance 0.654

5 On transport distance 0.612

6 Hour 0.609

7 Number of transfer 0.563

8 On transport distance 0.489

9 End walk distance 0.446

10 Start walk distance 0.423

Polestar. We rank features by information gain [18]. Higher infor-

mation gain means higher frequency the feature used to split nodes

in each boosting trees. As we can see, all features are route related

features except the 6th feature. The 6th feature is a context feature

describes the query time. Travel time factors are top-2 features,

which validates our intuition that time is the most important fac-

tors when the user plans a trip. Moreover, the 2nd and 4th features

are augmented features, illustrate the eectiveness of our feature

augmentation procedure. Finally, we observe that the relative gain

of all top-10 features are higher than 0.4, indicating no feature

dominates the re-ranking process.

8.3 Online assessment
Table 4: Online user interview result.

City G S B Improvement

Shanghai 123 62 15 24%

Guangzhou 52 40 8 32%

In the production environment, we observe Polestar achieves
9.4% relative improvement of user click ratio, where the user click

ratio is dened as the number of clicks over the number of Polestar
routed queries. Besides, Polestar reduces the size of the transporta-
tion graph to 3.3 GB, which is only 15.7% as large as the previous

one. Moreover, Polestar improves the single server QPS (query per

second) from 30 to 40, achieving a 33.3% improvement.

To evaluate the quality of new ranking results, we conduct user

interview one week after Polestar fully deployed. Specically, we

published survey questionnaires in Baidu Maps. In the question-

naire, we set three level ranking category,G , S ,B, whereG stands for

better than the previous ranking result, S stands for same as the pre-

vious ranking result, and B stands for worse than the previous rank-

ing result. The user interview result in Shanghai and Guangzhou

is reported in Table 4. The improvement of the new ranking result

is dened as
# of G−# of B
# of f eedbacks . Overall, Polestar achieves 24% and

32% gain in Shanghai and Guangzhou, respectively.

9 RELATEDWORK
Transportation routing can be partitioned into model-free routing
and model-based routing.

Model-free routing aims to build ecient algorithms to answer

specic queries, e.g., earliest arrival, latest departure, and shortest

duration [24]. For public transportation, the network is usually

formalized as a timetable graph [10]. On the one hand, ecient

index structures such as hub labeling [1] and contraction hierar-

chy [13] are proposed to speed up such shortest path search. On the



other hand, Funke et al. [12] and Sacharidis [21] study personalized
shortest path routing that supports various optimization criteria.

Delling et al. [7, 9] study the routing problem with multiple trans-

port mode choices. Eciency and reachability are major concerns

of above model-free routing algorithms in city-wide, whereas the

user preference and the dynamic travel context are overlooked.

Model-based routing employs learning or mining models to

improve routing performance. For example, MPR [5] discovers se-

quential patterns from the user trip history and proposes ecient

indices to speed up the retrieval of such patterns. T-drive [26] im-

proves route quality based on the taxi driver’s intelligence and

Dai [6] recommend routes from historical trajectories rather than

ad-hoc shortest path search. Moreover, Wang et al. [22] incorpo-
rates neural network into A∗ algorithm for personalized route rec-

ommendation. Hydra [17] introduces a data-driven approach that

incorporates a network embedding model [16] for multi-modal

route recommendation. All of the above approaches focus on nd-

ing better driving or traveling routes in a single city and are not

designated for public transportation routing.

10 CONCLUSION
In this paper, we presented Polestar, an intelligent, ecient and

national wide public transportation engine. We rst proposed PTG,

a unied graph structure to integrate heterogeneous public trans-

portation lines. Based on PTG, a station binding method and bidirec-

tional Dijkstra algorithm are introduced for ecient route candidate

generation. A two-pass ranking framework is then proposed for

route candidate selection and ranking. The re-ranking model con-

structs a rich set of situational features and adopts a learning to

rank model to capture user preference under dynamic travel con-

text. Polestar has been deployed and tested at scale on Baidu Maps

and answers a hundred millions of queries each day. We believe the

proposed framework is not limited to public transportation routing,

but also can be referenced for developing other large-scale trans-

port routing engines. We share our practical experience on how to

build such a production level routing engine and hope to provide

useful insights to communities in both academia and industry.
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